Information-Centric Networking

6th GI/ITG KuVS Workshop on Future Internet

Leibniz Universität Hannover
2010-11-22

Dirk Kutscher – NEC Laboratories Europe
Hannu Flinck – Nokia Siemens Networks
Holger Karl – Universität Paderborn

EU-FP7 Project SAIL
Trends

• Imminent traffic volume explosion
 – Video distribution as (literally) a killer application
 – Resource management issues unsolved today

• Information-centric communication is applied to individual applications
 – CDNs: transparent redirection of requests to topologically close servers
 – P2P: location-agnostic exchange of content chunks
 – Machine-to-Machine Communication

• Information-centric research activities
 – 4WARD NetInf: Information-centric networking with a flat naming scheme
 – CCN: Content-centric networking with a hierarchical naming scheme
 – PSIRP: Publish/subscribe for Internet-level communication
 – DTN: Delay-Tolerant Networking based on Bundle protocol

Cisco Forecasts 3.6 Exabytes per Month of Mobile Data Traffic by 2014
Information-Centric Networking

Today’s Internet

- Focus on nodes

Evolution:
- Web
- CDN
- P2P

In today’s Internet, accessing information is the dominating use case!

Future Information-centric Network

Focus on information objects and real world objects

SCALABLE & ADAPTIVE INTERNET SOLUTIONS
Web-based Information Retrieval

Web caching infrastructure

DNS request

HTTP response

HTTP request

Web browser

DNS infrastructure

Origin servers

IP forwarding infrastructure
ICN-based Information Retrieval

Web browser

Original Content “XY1”

Owner “Joe”

2010-11-24
Challenges for ICN

Naming of information objects

- Unique object identification
- Secure binding of names to objects and owners
- Names as keys for request/content routing
Challenges for ICN

Routing and Name Resolution

- Want to locate “best” copy of named objects
- Need a mapping/link between named objects and underlying network topology
- Want to support mobility and multi-homing
- Name-based forwarding: forward on names (based on corresponding routing protocol)
- Name resolution: resolve names to locators (leveraging underlying forwarding and routing infrastructure)
Challenges for ICN

Transport

- Reliable, congestion- and flow-controlled transport of objects from a given location to interested receiver
- Good support for caching, multi-path, disruption tolerance
- Options
 - Receiver-oriented transport
 - End-to-end vs. hop-by-hop
Challenges for ICN

Security

- Host-based e2e security no longer applies
- Receiver is agnostic to object location
- Objects can be replicated, distributed without owner control
- Receiver (and network elements) MUST be able to
 - Validate name-content binding
 - Validate object integrity
 - Validate object-owner binding
Summary of Challenges

• Architectural / Technical
 – Naming: properties of a naming system for ICN
 – Routing / resolution: finding suitable object copies
 – Transport: moving information objects
 – Security: object/content security instead of connection security

• Operational / organizational
 – Resource and performance management
 – Federating network domains

• Economic
 – Role of operators
 – Changes in communication paradigms: receiver-orientedness
ICN Design Space

• Different approaches to ICN
 – With different implications for naming, routing, transport, security

 • Name-based routing
 – Object names are used for forwarding decisions
 – Network is able to route and forward directly on names
 – Only next-hop names are resolved into lower-layer locators

• Name resolution and locator-based forwarding
 – Names are directly resolved to locators (of object caches)
 – Forwarding based on locators in the lower layer

• Plus hybrid variants of these approaches…
Name-based Routing

Overview
- Receivers send *Interest Packets* for named content to (selected) neighbor nodes
- Nodes have routing information to decide on next hop for Interest Packets
- Interest Packets reach a node with (a copy of) the named object
- Object (chunks) are (often) returned on the same path
- Nodes (often) have to maintain Interest tables
Name-based Routing

- Nodes need to know where to forward Interest Packets to
- Requires a routing protocol that distributes information about where to find what named content
- Scalability through aggregation of names (name prefixes)
- No resolution to end-to-end-relevant locators required
Name-based Routing

Nanxnan

Naming
- Fits well with hierarchical naming scheme
- E.g.: com/example/video/a.mp4 com/example/audio/b.mp3
- Content providers register content name (prefixes)
- Requests for fully qualified names match aggregated prefix
- Names likely to have some topological relevance
Name-based Routing

- Different from e2e TCP
- In overlay approach: hop-by-hop transport could be employed
- For L3 approach: receiver-oriented transport is a good candidate
 - Receiver requests packets over one or multiple interfaces
 - Requests are answered by intermediate nodes (caches) or origin node
 - Receivers control flow and other transport functions
Protocol Stacks in Name-based Routing ICN

Internet Hour Glass
- SMTP, HTTP, RTSP, SIP
- TCP, UDP, RTP
- IP
- Ethernet, WLAN
- Copper, Fiber, Radio

Name-Based Routing ICN
- Object / Stream Delivery
- Security
- Named Content Chunks
- IP, UDP, P2P
- Copper, Fiber, Radio
- Security
- Named Content Chunks
- IP, UDP, P2P
- Copper, Fiber, Radio
Naming Stacks in Name-based Routing ICN

Internet Naming

Search
- URIs
- DNS Names
- IP Addr.
- MAC-Addr. etc.

Naming in Name-Based Routing

Search
- Persistent names
- Object (chunk) names
- IP Addr., UDP endpoint addr., MAC-Addr. etc.
Name-based Routing Issues

- **Forwarding state in routers**
 - Often, routers have to maintain interest state
 - Could do without, but with some inefficiency

- **Agility with respect to topology changes**
 - When names are tied to network/organizational topologies, mobility of sources becomes costly
 - Names will change
 - For instance: source moves from net/isp1 to net/isp2
 - Can also lead to routing state explosion (depending on employed routing system)

Can be addressed by another naming layer and a name resolution service
Name Resolution-based ICN

• Layer of indirection – resolving names to
 – Other names
 – Locators
 – Rendezvous points

• Names: persistent information identifiers
 – Independent of network topology, copy locations etc.
 – Identifiers that are used by applications, receivers, content owners
 – But not necessarily by the network
Name Resolution-Based ICN

SCALABLE & ADAPTIVE INTERNET SOLUTIONS

- Get XY1
- Resolve XY1
- XY1 => [a.b.c.d]
- Content “XY1” at [a.b.c.d]
- Owner “Joe”
Name Resolution-Based ICN

Name resolution layer

Forwarding layer

SCALABLE & ADAPTIVE INTERNET SOLUTIONS

2010-11-24 24
Name Resolution-Based ICN

Overview
- Users request content by name
- Name is resolved to a locator (either by receiver or “in the network”)
- Name resolution system has a mapping of [name => locator]
- Receiver retrieves object from given node
- Forwarding layer employs independent routing system
Name Resolution-Based ICN

- **Routing**
 - Request routing can be part of resolution (DHT)
 - Resolution can be multi-step (DNS, multiple DHTs)
 - Actual routing takes place on forwarding layer

SCALABLE & ADAPTIVE INTERNET SOLUTIONS

- **Web browser**
 - Get XY1
 - XY1 from [a.b.c.d]

- **Content “XY1” at [a.b.c.d]**
 - Owner “Joe”

- **Routing**
 - Plus topology-based routing

Name resolution layer

- **Resolve XY1**
 - XY1->[a.b.c.d]

Forwarding layer

- **GET XY1 from [a.b.c.d]**
 - a.b.c
 - a.b.b
 - a.c.b
 - a.c.c

2010-11-24
Name Resolution-Based ICN

- Information object names are not tied to topology
- Can be persistent
- Do not need to be aggregate-able (depending on resolution system)
- Can provide additional functions such as secure naming

Plus topology-based routing

2010-11-24
NetInf Naming Scheme Overview 1

- Information Object (IO) = (ID, Data, Metadata)
- Each IO has an owner
- All equivalent copies have the same ID
 - This might include different versions

<table>
<thead>
<tr>
<th>Type</th>
<th>A=Hash(PK_{IO})</th>
<th>L={attributes}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Metadata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK_{IO}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Naming Stacks

Internet Naming
- URIs
- DNS Names
- IP Addr.
- MAC-Addr. etc.

Name-Based Routing Naming
- Persistent names
- Object (chunk) names
- IP Addr., UDP endpoint addr.
- MAC-Addr. etc.

Name Resolution-Based Naming
- Application-specific names
- Object names
- Topological Names
- IP Addr., UDP endpoint addr.
- MAC-Addr. etc.
Name Resolution-Based ICN

Name resolution layer

Forwarding layer

Resolve XY1

XY1=>[a.b.c.d]

Plus topology-based routing

Transport
- Can be e2e transport between receiver and located node
- Support of caching not straight-forward

SCALABLE & ADAPTIVE INTERNET SOLUTIONS

Web browser

Get XY1

Content "XY1" at [a.b.c.d]

Owner "Joe"
Name Resolution-Based ICN Issues

• Two-step approach
 – Explicit resolution step required

• Separating data transport from requests
 – On-path caching not straightforward

• Scalability and performance of resolution system
 – Resolution system has to be able to resolve all object names
 – Different possible implementations
Options For Way Forward

Name-based routing and Name resolution layer

GET XY1@Y

Resolve XY1

GET XY1 from Y/B/A

GET XY1 from [1.2.2.1]

SCALABLE & ADAPTIVE INTERNET SOLUTIONS

Web browser

GET XY1

Domain X

Domain Y

Content “XY1” at [1.2.2.1] in Domain Y

Owner “Joe”
Options For Way Forward

Name-based routing and Name resolution layer

Topography layer

Domain X

X/A

X/B

Content "XY1" at [1.2.2.1] in Domain Y

Domain Y

Y/A

Y/B

Web browser

GET XY1

Resolve XY1

GET XY1 from Y/B/A

GET XY1 from [1.2.2.1]

Content "XY1" at [1.2.2.1] in Domain Y

Owner "Joe"

2010-11-24
Options For Way Forward

- **Hybrid Name-Based Routing & Resolution**
 - Object names without topological relevance
 - Global topology layer
 - Local domains with independent topology address space
 - Objects may not be resolvable in all domains => defer resolution (late binding)
 - Allow for shortest path routing and direct transport where possible
 - Allow for connecting incompatible addressing domains
 - Allow for non-permanently connected domains (Delay-Tolerant Networking)

- **Domain X**
 - a.c
 - a.h

- **Domain Y**
 - 1.2.2
 - 1.2.1

- **For Forwarding layer**
 - X/A
 - X/B
 - Y/A

- **Resolve XY1**
 - GET XY1 from Y/B/A
 - GET XY1 from [1.2.2.1]
Conclusions

- Information-Centric Networking: Different possible approaches
 - Name-Based Routing
 - Resolution-Based
 - (and hybrids)

- Need to understand implications and trade-offs
 - Scalability of Naming Resolution and Routing Systems
 - Effects of mobility

- SAIL Approach
 - ICN enabling interworking between different networking and addressing/naming domains: IPv4, IPv6, DTN
 - Persistent and secure naming as core concept

- Some interesting questions
 - Application-specific (human-friendly) names?
 - URIs and WWW hyperlinks?
 - Services and dynamic object in a Network of Information